Telegram Group & Telegram Channel
Gumbel-Softmax - памятка себе на будущее

Итак, представим что у нас есть какая-то вероятностная модель, в которой сэмплирование из распределения является её частью. Самым банальным примером, пожалуй, является VAE.

VAE - это автоэнкодер, состоящий из моделей q(z|x) и p(x|z), которые выдают распределение на скрытую компоненту z по входу x и наоборот. В базовом варианте z имеет нормальное распределение N(m;d), и энкодер выдаёт параметры этого распределения - средние m и ст. отклонения d.

При обучении подобной модели у нас возникает градиент ошибки по сэмплу из z. Как пробросить градиент назад в модели "сквозь" это сэмплирование? В лоб сделать это не получится, и для этого применяют простой советский Reparametrization Trick.

Его суть в том, что процесс сэмплирования отделяют от основной цепочки вычислений и оформляют как входную вершину вычислительного графа. В случае с нормальным распределением, мы сначала отдельно сэмплируем eps из N(0;1), а затем умножаем его на d и прибавляем m. По факту результат тот же самый, но он превращает нейросеть в цепочку детерминированных операций и позволяет пробрасывать градиент бэкпропом.

Gumbel-Softmax - то же самое, но для категориального распределения.

Вместо обычного VAE давайте взглянем на VQ-VAE - альтернативный вариант автоэнкодера, в котором вместо сжатия в нормальное распределение происходит сжатие в категориальное распределение на "коды". Внутри модели хранится Codebook, который превращает номер кода обратно в эмбеддинг во время декодинга.

Итак, в сердцевине модели находится такая цепочка вычислений: logits -> probs -> one-hot vector -> embedding. При переходе из probs к one-hot vector как раз и возникает сэмплирование из категориального распределения, сквозь которое нельзя пробросить градиент напрямую.

Gumbel-Softmax позволит приближенно осуществить этот переход с помощью детерминированной операции. Если к логарифму от вектора probs прибавить вектор из распределения Гумбеля (аналог N(0;1) в данном случае), то argmax итогового вектора будет распределён так же, как и исходное распределение.

Последняя проблема - argmax сам недифференцируем, поэтому его заменяют на софтмакс с маленькой температурой. В итоге, получая на вход [0.2;0.8], эта операция будет выдавать [0.001; 0.999] в 80% случаев и [0.999;0.001] в 20 процентах случаев.

Самый большой затык вызывает следующий вопрос - в чём профит этой штуки по сравнению с тем, чтобы просто использовать [0.2;0.8] в дальнейших операциях, если там всё равно не требуется строгий one-hot вектор?

Я объясняю это так - во время обучения мы хотим, чтобы все последующие части модели получали на вход реалистичные сэмплы из категориального распределения. Если наша модель будет учиться на размазанных векторах, то мы не сможем во время инференса просто начать сэмплировать код - декодер не выкупит этот пранк.

А что делать в случае, когда нам реально нужен строгий one-hot вектор, например, если это RL и мы совершаем действие? Авторы оригинальной статьи предлагают комбинировать Straight Through Estimator и Gumbel Softmax, т.е. использовать [1; 0], а градиент пробрасывать так, как будто там был [0.999; 0.001]. Но я никогда не встречал применения такой схемы.

@knowledge_accumulator



tg-me.com/knowledge_accumulator/265
Create:
Last Update:

Gumbel-Softmax - памятка себе на будущее

Итак, представим что у нас есть какая-то вероятностная модель, в которой сэмплирование из распределения является её частью. Самым банальным примером, пожалуй, является VAE.

VAE - это автоэнкодер, состоящий из моделей q(z|x) и p(x|z), которые выдают распределение на скрытую компоненту z по входу x и наоборот. В базовом варианте z имеет нормальное распределение N(m;d), и энкодер выдаёт параметры этого распределения - средние m и ст. отклонения d.

При обучении подобной модели у нас возникает градиент ошибки по сэмплу из z. Как пробросить градиент назад в модели "сквозь" это сэмплирование? В лоб сделать это не получится, и для этого применяют простой советский Reparametrization Trick.

Его суть в том, что процесс сэмплирования отделяют от основной цепочки вычислений и оформляют как входную вершину вычислительного графа. В случае с нормальным распределением, мы сначала отдельно сэмплируем eps из N(0;1), а затем умножаем его на d и прибавляем m. По факту результат тот же самый, но он превращает нейросеть в цепочку детерминированных операций и позволяет пробрасывать градиент бэкпропом.

Gumbel-Softmax - то же самое, но для категориального распределения.

Вместо обычного VAE давайте взглянем на VQ-VAE - альтернативный вариант автоэнкодера, в котором вместо сжатия в нормальное распределение происходит сжатие в категориальное распределение на "коды". Внутри модели хранится Codebook, который превращает номер кода обратно в эмбеддинг во время декодинга.

Итак, в сердцевине модели находится такая цепочка вычислений: logits -> probs -> one-hot vector -> embedding. При переходе из probs к one-hot vector как раз и возникает сэмплирование из категориального распределения, сквозь которое нельзя пробросить градиент напрямую.

Gumbel-Softmax позволит приближенно осуществить этот переход с помощью детерминированной операции. Если к логарифму от вектора probs прибавить вектор из распределения Гумбеля (аналог N(0;1) в данном случае), то argmax итогового вектора будет распределён так же, как и исходное распределение.

Последняя проблема - argmax сам недифференцируем, поэтому его заменяют на софтмакс с маленькой температурой. В итоге, получая на вход [0.2;0.8], эта операция будет выдавать [0.001; 0.999] в 80% случаев и [0.999;0.001] в 20 процентах случаев.

Самый большой затык вызывает следующий вопрос - в чём профит этой штуки по сравнению с тем, чтобы просто использовать [0.2;0.8] в дальнейших операциях, если там всё равно не требуется строгий one-hot вектор?

Я объясняю это так - во время обучения мы хотим, чтобы все последующие части модели получали на вход реалистичные сэмплы из категориального распределения. Если наша модель будет учиться на размазанных векторах, то мы не сможем во время инференса просто начать сэмплировать код - декодер не выкупит этот пранк.

А что делать в случае, когда нам реально нужен строгий one-hot вектор, например, если это RL и мы совершаем действие? Авторы оригинальной статьи предлагают комбинировать Straight Through Estimator и Gumbel Softmax, т.е. использовать [1; 0], а градиент пробрасывать так, как будто там был [0.999; 0.001]. Но я никогда не встречал применения такой схемы.

@knowledge_accumulator

BY Knowledge Accumulator




Share with your friend now:
tg-me.com/knowledge_accumulator/265

View MORE
Open in Telegram


Knowledge Accumulator Telegram | DID YOU KNOW?

Date: |

A Telegram spokesman declined to comment on the bond issue or the amount of the debt the company has due. The spokesman said Telegram’s equipment and bandwidth costs are growing because it has consistently posted more than 40% year-to-year growth in users.

Export WhatsApp stickers to Telegram on Android

From the Files app, scroll down to Internal storage, and tap on WhatsApp. Once you’re there, go to Media and then WhatsApp Stickers. Don’t be surprised if you find a large number of files in that folder—it holds your personal collection of stickers and every one you’ve ever received. Even the bad ones.Tap the three dots in the top right corner of your screen to Select all. If you want to trim the fat and grab only the best of the best, this is the perfect time to do so: choose the ones you want to export by long-pressing one file to activate selection mode, and then tapping on the rest. Once you’re done, hit the Share button (that “less than”-like symbol at the top of your screen). If you have a big collection—more than 500 stickers, for example—it’s possible that nothing will happen when you tap the Share button. Be patient—your phone’s just struggling with a heavy load.On the menu that pops from the bottom of the screen, choose Telegram, and then select the chat named Saved messages. This is a chat only you can see, and it will serve as your sticker bank. Unlike WhatsApp, Telegram doesn’t store your favorite stickers in a quick-access reservoir right beside the typing field, but you’ll be able to snatch them out of your Saved messages chat and forward them to any of your Telegram contacts. This also means you won’t have a quick way to save incoming stickers like you did on WhatsApp, so you’ll have to forward them from one chat to the other.

Knowledge Accumulator from br


Telegram Knowledge Accumulator
FROM USA